20 research outputs found

    First study of radiation hardness of lead tungstate crystals at low temperatures

    Get PDF
    The electromagnetic calorimeter of PANDA at the FAIR facility will rely on an operation of lead tungstate (PWO) scintillation crystals at temperatures near -25 deg.C to provide sufficient resolution for photons in the energy range from 8 GeV down to 10 MeV. Radiation hardness of PWO crystals was studied at the IHEP (Protvino) irradiation facility in the temperature range from room temperature down to -25 deg.C. These studies have indicated a significantly different behaviour in the time evolution of the damaging processes well below room temperature. Different signal loss levels at the same dose rate, but at different temperatures were observed. The effect of a deep suppression of the crystal recovery process at temperatures below 0 deg.C has been seen.Comment: 10 pages 7 figure

    Comparison of Radiation Damage in Lead Tungstate Crystals under Pion and Gamma Irradiation

    Full text link
    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a 137Cs^{137}Cs γ\gamma-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.Comment: 10 pages, 8 figures, Latex 2e, 28.04.04 - minor grammatical change

    LED Monitoring System for the BTeV Lead Tungstate Crystal Calorimeter Prototype

    Full text link
    We report on the performance of a monitoring system for a prototype calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled with photomultiplier tubes. The tests were carried out at the 70 GeV accelerator complex at Protvino, Russia.Comment: 12 pages, 8 figures, LaTeX2e, revised versio

    Correlation of Beam Electron and LED Signal Losses under Irradiation and Long-term Recovery of Lead Tungstate Crystals

    Full text link
    Radiation damage in lead tungstate crystals reduces their transparency. The calibration that relates the amount of light detected in such crystals to incident energy of photons or electrons is of paramount importance to maintaining the energy resolution the detection system. We report on tests of lead tungstate crystals, read out by photomultiplier tubes, exposed to irradiation by monoenergetic electron or pion beams. The beam electrons themselves were used to measure the scintillation light output, and a blue light emitting diode (LED) was used to track variations of crystals transparency. We report on the correlation of the LED measurement with radiation damage by the beams and also show that it can accurately monitor the crystals recovery from such damage.Comment: 9 pages, 6 figures, LaTeX2

    Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter

    Full text link
    A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.Comment: 10 pages, 6 figures, LaTeX2

    Total Cross Section Measurements With π- , Σ- And Protons On Nuclei And Nucleons Around 600 Gev/c

    Get PDF
    Total cross sections for Σ- and π- on beryllium, carbon, polyethylene and copper as well as total cross sections for protons on beryllium and carbon have been measured in a broad momentum range around 600GeV/c . These measurements were performed with a transmission technique in the SELEX hyperon-beam experiment at Fermilab. We report on results obtained for hadron-nucleus cross sections and on results for σtot(Σ-N) and σtot(π-N) , which were deduced from nuclear cross sections. © 2000 Elsevier Science B.V.57901/02/15277312Langland, J.L., (1995) Ph.D. Thesis, , University of IowaKleinfelder, S.A., (1988) IEEE Trans. Nucl. Sci., 35 (1)Dersch, U., (1998) Ph.D. Thesis, HeidelbergBiagi, S.F., (1981) Nucl. Phys. B, 186, pp. 1-21Bellettini, G., (1966) Nucl. Phys., 79, pp. 609-624Schiz, A.M., (1980) Phys. Rev. D, 21, pp. 3010-3022Murthy, P.V.R., (1975) Nucl. Phys. B, 92, pp. 269-308Caso, C., (1998) Eur. Phys. J. C, 3. , http://pdg.lbl.gov/1998/contents_plots.html, and data on total cross sections from computer readable filesSchiz, A.M., (1979) Ph.D. Thesis, , Yale University(1973) Landolt Börnstein Tables, 7. , Springer editionEngler, J., (1970) Phys. Lett. B, 32, pp. 716-719Babaev, A., (1974) Phys. Lett. B, 51, pp. 501-504Glauber, R.J., (1959) Boulder Lectures, pp. 315-413Franco, V., (1972) Phys. Rev. C, 6, pp. 748-757Karmanov, V.A., Kondratyuk, L.A., (1973) JETP Lett., 18, pp. 266-268Burq, J.P., (1983) Nucl. Phys. B, 217, pp. 285-335Gross, D., (1978) Phys. Rev. Lett., 41, pp. 217-220Beznogikh, G.G., (1972) Phys. Lett. B, 39, pp. 411-413Vorobyov, A.A., (1972) Phys. Lett. B, 41, pp. 639-641Foley, K.J., (1967) Phys. Rev. Lett., 19, pp. 857-859Fajardo, L.A., (1981) Phys. Rev. D, 24, pp. 46-65Jenni, P., (1977) Nucl. Phys. B, 129, pp. 232-252Breedon, R.E., (1989) Phys. Rev. Lett. B, 216, pp. 459-465Amos, N., (1983) Phys. Rev. Lett. B, 128, pp. 343-348Amaldi, U., (1977) Phys. Rev. Lett. B, 66, pp. 390-394Amos, N., (1985) Nucl. Phys. B, 262, pp. 689-714Akopin, V.D., (1977) Sov. J. Nucl. Phys., 25, pp. 51-55Amirkhanov, I.V., (1973) Sov. J. Nucl. Phys., 17, pp. 636-637Foley, K.J., (1969) Phys. Rev., 181, pp. 1775-1793Apokin, V.D., (1976) Nucl. Phys. B, 106, pp. 413-429Burq, J.P., (1982) Phys. Lett. B, 109, pp. 124-127Dakhno, L.G., (1983) Sov. J. Nucl. Phys., 37, pp. 590-598Kazarinov, M., (1976) Sov. Phys. JETP, 43, pp. 598-606De Jager, C.W., (1974) At. Data Nucl. Data Tables, 14, pp. 479-508Donnachie, A., Landshoff, P.V., (1992) Phys. Lett. B, 296, pp. 227-232Lipkin, H., (1975) Phys. Rev. D, 11, pp. 1827-1831Barnett, R.M., (1996) Phys. Rev. D, 54, pp. 191-192Carroll, A.S., (1979) Phys. Lett. B, 80, pp. 423-427Badier, J., (1972) Phys. Lett. B, 41, pp. 387-39

    Total Cross Section Measurements with pi-, Sigma- and Protons on Nuclei and Nucleons around 600 GeV/c

    Full text link
    Total cross sections for Sigma- and pi- on beryllium, carbon, polyethylene and copper as well as total cross sections for protons on beryllium and carbon have been measured in a broad momentum range around 600GeV/c. These measurements were performed with a transmission technique adapted to the SELEX hyperon-beam experiment at Fermilab. We report on results obtained for hadron-nucleus cross sections and on results for sigma_tot(Sigma- N) and sigma_tot(pi- N), which were deduced from nuclear cross sections.Comment: 42 pages, submitted to Nucl.Phys.
    corecore